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Molecular-targeted therapy has been developed for cancer chemoprevention and treatment. Cancer cells have different metabolic
properties from normal cells. Normal cells mostly rely upon the process of mitochondrial oxidative phosphorylation to produce
energy whereas cancer cells have developed an altered metabolism that allows them to sustain higher proliferation rates. Cancer
cells could predominantly produce energy by glycolysis even in the presence of oxygen. This alternative metabolic characteristic
is known as the “Warburg Effect.” Although the exact mechanisms underlying the Warburg effect are unclear, recent progress
indicates that glycolytic pathway of cancer cells could be a critical target for drug discovery. With a long history in cancer
treatment, traditional Chinese medicine (TCM) is recognized as a valuable source for seeking bioactive anticancer compounds.
A great progress has been made to identify active compounds from herbal medicine targeting on glycolysis for cancer treatment.
Herein, we provide an overall picture of the current understanding of the molecular targets in the cancer glycolytic pathway and
reviewed active compounds from Chinese herbal medicine with the potentials to inhibit the metabolic targets for cancer treatment.
Combination of TCM with conventional therapies will provide an attractive strategy for improving clinical outcome in cancer
treatment.

1. Introduction

Cancer is the second leading cause of mortality in human dis-
eases worldwide. According to a national statistic report on
the incidence and mortality in the USA, there were a total of
1,529,560 new cancer cases and 569,490 deaths from cancer
occurring in 2010 [1]. Surgery, chemotherapy, and radiother-
apy, either alone or in combination, have been considered
as conventional strategies for cancer treatment in the last
century. With the rapid development of molecular medicine,
novel therapeutic approaches, such as immunotherapy,
molecular targeted therapy, and hormonal therapy, have
been proposed to improve clinical outcomes for cancer
patients [2–4]. However, those therapeutic approaches are
not always effective and clinical outcome in survival rates
is still poor. One of the major problems is that cancer cells
gradually develop resistances to those therapies. Seeking for
new therapeutic approaches to improve outcome of cancer
treatment is timely important.

Complementary and alternative medicine (CAM)
attracts much attention for drug discovery in current
cancer research [5, 6]. Among CAM modalities, TCM is
particularly appreciated in both rural and well-developed
urban areas of China based on its 5000-year-old history
and a well-established theoretical approach [7, 8]. In China,
Chinese herbal medicine is widely used as an adjunct therapy
to reduce the resistances and side effects of cancer cells to
chemotherapy and radiotherapy. Chinese herbal medicine
in combination with chemotherapy and radiotherapy
potentially improves clinical outcome in cancer treatment
[9]. However, the relatively poor designs in many clinical
reports, such as lack of quality standardization of herbal
products, shortage of well-designed randomized controlled
trials (RCT), and the limited sample size, bring difficulty to
evaluate the benefits or disadvantages of herbal medicine
for cancer treatment [10, 11]. TCM approaches have
always been met with much skepticism and pessimism
by the West. In fact, medicinal herbs are very important
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resources for drug discovery in cancer treatment. The
direct experience from TCM on human subjects and its
long history provide important cues for drug development.
Of the 121 prescription drugs in use today for cancer
treatment, 90 are originally derived from medicinal plants.
Almost 74% of those drugs were discovered from folk
medicine [12, 13]. In a previous review article, 48 out
of 65 new drugs approved for cancer treatment during
1981–2002 were natural products, leading from natural
products, or mimicked natural products in one form or
another [14]. Among the drugs, the most well-known
examples include Vinca alkaloids (vincristine, vinblastine,
vindesine, vinorelbine), taxanes (paclitaxel, docetaxel),
podophyllotoxin and its derivative (etoposide, teniposide),
camptothecin and its derivatives (topothecan, irinothecan),
anthracyclines (doxorubicin, daunorubicin, epirubicin,
idarubicin), and others [15]. There is an impressive revival
of seeking natural lead compounds for the generation of
semisynthetic derivatives. Current progress in this aspect
not only provide a chemical bank from natural sources
for drug discovery but also bring better understanding for
the chemical basis of Chinese herbal medicine for cancer
treatment.

With its multiple components, TCM formulas and ther-
apies are generally considered to regulate multiple cellular
signal pathways [16]. Herbal medicine and their active
components are promising sources for the designs of more
effective and less toxic agents in cancer chemoprevention
and treatment [17]. Many TCM products or single active
components have been reported to inhibit a variety of
processes in cancer cell growth, invasion, and metastasis by
modulating a wide range of molecular targets, including
cyclooxygenase-2 (COX-2), nuclear factor kappa B (NF-
κB), and nuclear factor erythroid 2-related factor 2 (Nrf2)-
mediated antioxidant signaling pathways. A previous review
article summarized the therapeutic targets of traditional
Ayurvedic medicine for inflammation and cancer. The tar-
gets include growth factor signaling (e.g., epidermal growth
factor); prostaglandin (e.g., COX-2); inflammation factors
(e.g., inflammatory cytokines: TNF, IL-1, IL-6, chemokines);
drug resistance genes (e.g., multidrug resistance); cell cycle
proteins (e.g., cyclin D1 and cyclin E); angiogenesis factors
(e.g., vascular endothelial growth factor); invasion mediators
(e.g., matrix metalloproteinases); apoptosis related genes
(e.g., bcl-2, bcl-X(L), XIAP, survivin, FLIP); proliferation
factors (e.g., c-myc, AP-1, growth factors), [18]. With the
development of systematic biology and bioinformatics, more
attention has been paid to the synergistic effects of herbal
medicine on “common” signal pathways involved in the
proliferation, invasion, metastasis, and apoptosis of cancer
cells. It is interesting to ask the question whether herbal
medicine and it’s derivatives can specially target on tumor
biomarkers and affect survival of cancer cells.

Molecular targeted therapy has been attracted much
attention in cancer treatment [19]. Ideally, the identified
targets should be preferentially expressed or activated in can-
cer cells but not in normal cells. Combining molecular and
genetic technologies, a number of small molecular inhibitors
and antibodies targeting on kinases or oncogenes has been

designed and synthesized [20, 21]. The most well-known
examples include the small molecule Gleevec (targeting on
BCR-ABL translocation associated with chronic myeloge-
nous leukemia), and antibody-based molecule Herceptin
(c-erbB-2 overexpression related to breast cancer), [22,
23]. However, primary and secondary resistances to these
targeted molecules severely reduce their therapeutic efficacy
[24, 25]. Therefore, seeking more distinctive molecular
targets and their corresponding drug candidates become
important tasks for oncologists.

Cancer cells can be distinguished from normal cells in
several hallmarks. One of hall marks is that cancer cells have
a fundamentally different bioenergetic metabolism from that
of nonneoplastic cells. In normal cells, energetic metabolism
mostly relies upon the process of mitochondrial oxidative
phosphorylation which consumes glucose and oxygen to
produce energy. In contrast, cancer cells have developed
an altered metabolism that allows them to sustain higher
proliferation rates [26]. Cancer cells could predominantly
produce energy by glycolysis followed by lactic acid fermen-
tation, even in the presence of oxygen—this is known as
the “Warburg Effect” [27, 28]. Cancer glycolysis is a critical
step in carcinogenesis and oncogenic activation [29, 30].
Targeting on glycolysis becomes an attractive strategy in
cancer diagnosis and treatment clinically [31]. The inhibitors
targeting some key enzymes showed promising anticancer
effects and have been approved for clinical trials [32].
Chinese herbal medicine could specifically target on the
molecules in the metabolic pathways of cancer. Recent
progress leads to the discoveries of many active compounds
derived from Chinese herbs with the properties of inhibiting
cancer cell glycolysis activity. Therefore, in the present paper,
we intend to review current progress about TCM-derived
phytochemicals which specifically target the key enzymes and
proteins involved in cancer glycolysis.

2. Glycolytic Pathway as a Target for
Cancer Therapy

Otto Heinrich Warburg, a pioneer in the study of respiration,
made a striking discovery in the 1920s from extensive
observation on the metabolic behavior of cancer cells. Even
in the presence of oxygen, cancer cells prefer to metabolize
glucose by glycolysis, a less efficient pathway for produc-
ing ATP [33]. The respiratory behavior was subsequently
demonstrated in a various kinds of cancer cells and was
called aerobic glycolysis [34–36]. The exact reasons why
tumor cells exhibit elevated glycolysis and use this primitive
and less energy-efficient pathway to generate ATP is still
unclear. Accumulating evidences have suggested multiple
mechanisms contributing to the unique phenomenon: (1)
mitochondrial DNA mutations; (2) nuclear DNA muta-
tions; (3) oncogenic transformation; (4) influences of the
tumor microenvironment [37–39]. All these factors result in
mitochondrial dysfunction and make cancer cells generate
ATP much more dependently on the glycolytic pathway.
Given the mitochondrial respiratory abnormality, cancer
cells have to uptake much more glucose to produce enough
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ATP supporting rapid proliferation needs. At present, the
phenomenon has been exploited clinically for the detection
of tumors by fluorodeoxyglucose positron emission tomog-
raphy (FDG-PET) [40]. Inhibition of aerobic glycolysis
becomes an important strategy to preferentially kill cancer
cells and to find anticancer agents based on Warburg
hypothesis [41, 42]. As illustrated in Figure 1, cancer cells
in the tumor mass could be divided into oxygenated and
hypoxic cells. Hypoxic cancer cells predominately depend
on glycolysis to produce energy. The glycolytic pathway is a
series of metabolic reactions catalyzed by multiple enzymes
or enzyme complexes. From the original glucose uptake to
the final lactate production, the key steps include: (1) the
increasing uptake of glucose by elevated expression of glucose
transporter-1 (GLUT1) and sodium glucose cotransporter-1
(SGLT1); (2) active ATP generation reaction by upregulation
of phosphoglycerate kinase (PGK) and pyruvate kinase (PK);
(3) regeneration of NAD+ by lactate dehydrogenase (LDH);
(4) out-transport and reuptake of lactate by monocarboxy-
late transporter (MCT), mainly MCT1 and MCT4 [43, 44].
In oxygenated cancer cells, the reuptaken lactate could be
metabolized to pyruvate and reentered the mitochondrial
tricarboxylic acid cycle to produce ATP. Each reaction in
the glycolytic pathway is activated by a specific enzyme or
enzyme complex. Interrupting any of the above proteins
could lead to metabolism blockade followed by cell death.
The activities of many enzymes in the pathway are controlled
by two factors including c-myc and hypoxia inducible factor-
1α (HIF-1α) [45, 46]. Many studies have demonstrated
an increase in the activities of the glycolytic enzymes
such as hexokinase, lactate dehydrogenase A (LDH-A), and
glyceraldehydes-3-phosphate dehydrogenase (GAPDH) in
various types of tumors and cancer cell lines [47–49]. In
addition, silencing of these overexpressed enzymes, such as
LDH-A or pyruvate kinase (PKM2), has been documented
efficiency for inhibiting cancer cell proliferation, induc-
ing apoptosis and reversing multidrug resistance [50–52].
Furthermore, some glycolytic enzymes are multifunctional
proteins. For example, hexokinase and enolase play critical
roles in transcription regulation [53, 54], while glucose-6-
phosphate isomerase may affect cell motility [55]. There-
fore, developing novel glycolytic inhibitors is an important
direction in current cancer research. As TCM has held an
important position in primary health care in China and
been recently recognized by the West as a fertile source for
revealing novel lead molecules for modern drug discovery,
more and more herb-derived bioactive compounds have
been identified for cancer therapy. Among them, several have
been proved to be effective in suppressing cancer glycolytic
activity by targeting on particular enzymes. Herein, we
review current evidence on the studies of herbal medicine
related to regulate several key enzymes in the glycolytic
pathway including HIF-1α, hexokinase, and LDH-A.

3. Glycolytic Molecular Targets and
Herb-derived Inhibitors

3.1. HIF-1α. HIF-1 is a basic helix-loop-helix heterodimeric
transcriptional factor composed of α and β subunits [56].

HIF-1 is overexpressed in various types of cancer, and the
levels of its activity have already been demonstrated closely
to tumorigenicity, angiogenesis and also glycolytic activity
[57, 58]. HIF-1α levels are primarily induced by hypoxia,
growth factors, and oncogenes. As shown in Figure 2, under
normoxia, HIF-1α is rapidly and continuously degraded
by the ubiquitin-proteasome pathway. The prolyl hydrox-
ylation of oxygen-dependent degradation domain (ODD)
and binding with Von Hippel-Lindau (VHL) play a critical
role in regulation of HIF-1α degradation. However, under
hypoxic condition, the absence of oxygen prevents the
prolyl hydroxylase process, allowing HIF-1α to accumulate
and translocate to the nucleus, where it forms an active
complex with HIF-1β and activates a series of downstream
gene transcription [59, 60]. Besides hypoxia, the expression
of HIF-1 was also regulated by other factors including
oncogenes (p53, VHL, etc.), cytokines (EGF, TGF-α, IGF-
1, and -2, etc.) and some posttranslational modifications
including hydroxylation, ubiquitination, acetylation, and
phosphorylation, [61, 62]. A number of glycolytic related
genes are regulated by HIF-1α, such as GLUT-1, hexoki-
nase, LDH-A, and PDK1. Interruption of HIF-1α signaling
revealed to inhibit cancer growth in both in vitro and in vivo
experimental models [63].

Recently, a remarkable progress has been made to
seek selective HIF-1α inhibitors for cancer treatment from
herbal medicine. Apigenin, a plant flavonoid compound, is
considered as a typical HIF-1α inhibitor [64–72]. Apigenin
is isolated from a traditional Chinese herb Apium graveolens
var.dulce. Apigenin has been shown to inhibit proliferation
and induce apoptosis in a wide range of malignant cells
including breast, ovarian, prostate, and lung cancer, [65–68].
Apigenin suppressed tumor angiogenesis by downregulating
VEGF, a proangiogenic protein regulated by HIF-1α [69,
70]. Apigenin inactivated the PI3K/Akt pathway in prostate
cancer cells [71, 72]. Apigenin reduced HIF-1α stability
and HIF-1α mRNA expression in human prostate cancer
PC3-M cells via PI3K/Akt/GSK-3β pathway [73]. Apigenin
promoted HIF-1α degradation via disrupting HIF-1α-Hsp90
interaction under hypoxia [74]. Oral administration of
apigenin resulted in tumor growth abrogation in prostate
cancer xenografts, accompanied by inactivation of Akt, and
induction of apoptosis [72]. Another study also revealed
that apigenin in vivo administration significantly limited
tumor growth and angiogenesis in both prostate and ovarian
cancer models. Meanwhile, the expression of HIF-1α and
VEGF were also down-regulated in apigenin-treated tumor
samples [69]. Chrysin, isolated from Oroxylum indicum
(L.)Vent, mediated apoptosis in various types of cancer
including prostate, thyroid, and leukemia malignancies [75–
77]. Chrysin significantly inhibited prostate cancer growth
and angiogenesis with a decreased HIF-1α expression [78].
The suppression of HIF-1α expression could be related
to different mechanisms including stimulation of PHD
activity, disruption of HIF-1α-HSP90 interaction and direct
inhibition of HIF-1α protein synthesis [78]. Epigallocatechin
gallate (EGCG) is a widely spread flavonoid in Chinese
herbs. The anticancer effects of EGCG were well documented
[79, 80]. Many of its intracellular molecular targets, such
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Figure 1: Glycolytic pathway and the role of HIF-1α in regulating glycolysis. Glucose was uptaken by increased expression of GLUT in
hypoxia cancer cells. Through a series of enzyme reaction, glucose was finally metabolized into lactate and ATP, NAD+ was also regenerated
by LDH-A for maintaining continuous glycolysis. Lactate was exhausted out of cancer cells by MCT4 and then uptaken by oxygenated cancer
cells through MCT1. In the presence of oxygen, lactate is oxidized into pyruvate by LDH-B and pyruvate enters the tricarboxylic acid (TCA)
cycle to produce ATP. HIF-1α was the main regulator of some enzymes expression in the glycolytic pathway, including GLUT-1, hexokinase,
phosphofructokinase, pyruvate kinase, pyruvate dehydrogenase, LDH-A, and MCT.

as proteasomes, MAP kinases, VEGF, erythropoietin, and
glucose transporters, are directly or indirectly regulated
by HIF-1α [81, 82]. Several studies indicate that EGCG
could inhibit HIF-1α expression by both blocking PI3K/Akt
signaling pathway and reducing interaction between Hsp90
and HIF-1α [83]. Besides, curcumin, a well-validated anti-
cancer compound extracted from Curcuma longa, has been
found to interact directly with more than 30 different
proteins including transcriptional factors (NF-κB, AP-1,
STAT, and β-catenin, etc.), growth factors and protein
kinases (EGFR, ErbB-2, VEGF, EGF, MAPKs, and CXCR-
4, etc.), inflammatory factors (TNF-α, IL-1β, IFN-γ, and
COX-2, etc.), adhesion molecules (integrins, fibronectin,
vitronectin, and collagen IV, etc.) and apoptosis-related
proteins (death receptors, Bax, Bcl-2, and survivin, etc.)
[84, 85]. Several studies also demonstrated that curcumin
dose-dependently inhibited HIF-1α and HIF-1β gene at
transcription level [86, 87]. Using luciferase reporter gene
assay, an Indian herb Ophiorrhiza trichocarpon was identified
to have the strongest HIF-1α inhibitive effects among
more than 6,000 crude natural products. The extracts of
Ophiorrhiza trichocarpon were shown to reduce hypoxia-
induced HIF-1α accumulation to 22% relative to the normal

control. Following bioactivity-guided fractionation assay
validated camptothecin to be the best HIF-1α inhibitor
among 84 fractions isolated from the medicinal plant [88].
Since the primary molecular target of camptothecin is
established as human DNA topoisomerase I, its anticancer
effects need to be further verified in animal experiments.
Detail mechanisms in regulation of HIF-1α transcription
activity remain to be further investigated. Terpenoids were
also reported to inhibit HIF-1α activity. Nguyen et al.
carried out screening assay for HIF-1α inhibitors from
Salvia miltiorrhiza extracts by using luciferase gene reporting
system. Diterpenes including sibiriquinone A, sibiriquinone
B, cryptotanshinone, and dihydrotanshinone were finally
identified to be strong HIF-1α inhibitors [89]. Although
many herb-derived compounds are effective in suppressing
HIF-1α activity, little compound is identified to specifically
bind to HIF-1α. The structure-activity relationship and
chemical optimization study are important topics for further
studies on this direction. In addition, as many studies were
conducted with cell systems, in vivo animal experiments are
essentials to verify the bioactivities of targeting on HIF-
1α activity contributing to their anticancer effects for drug
development.
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3.2. Hexokinase. Hexokinase (HK) controls the conversion
of glucose to glucose-6-phosphate (G6P), which serves as
the starting point for sugar to enter the glycolytic pathway
or for glycogen synthesis [90]. Four isoforms of hexokinase
have been identified in mammals, among which hexokinase
II (HKII) is a major form responsible for maintaining
the high glucose catabolic rates of malignant cells [91].
HKII overexpression was found in various types of cancers
such as liver, breast, and lung cancers [92]. In addition
to its glucose phosphorylation activity, HKII is capable of
binding to the voltage-dependent anion channel (VDAC)
on the mitochondrial outer membrane [93]. The specific
binding not only allows efficient use of mitochondrial-
generated ATP served as glycolytic fuel, but also stabilizes the

mitochondrial membrane and prevents the release of pro-
apoptotic factors, such as cytochrome C [94]. Disrupting
the interaction between HKII and VDAC could inhibit
cell proliferation and induce apoptosis through decreasing
ATP supply and destabilization of mitochondrial membranes
(Figure 3). Therefore, developing inhibitors targeting HKII
is an interesting topic in anticancer drug development. 2-
deoxyglucose (2-DG) and 3-bromopyruvate (3-BrpA) are
well known HKII inhibitors [95, 96]. These pharmacological
inhibitors have been proved to be effective in disrupting
the binding of HKII to the mitochondrion, depleting ATP,
inhibiting cell cycle progression, and inducing cell death.
A TCM formula Ben Cao Xiao Ke Dan was revealed a
strong inhibitory effect on HKII activity. However, exact
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phytochemicals in the formula accounting for this inhibitory
effect remains unclear [97]. Methyl jasmonate, a plant lipid
derivative, exists in many herbs and functions as a signaling
molecule in the stress response. Methyl jasmonate was
shown to induce apoptosis in various malignancies including
prostate, cervical, and bladder cancers [98–100]. Recent
studies found that its apoptosis-induction effects are closely
correlated to the disruption of the interactions between HKII
and VDAC [101]. Although some HKII inhibitors, such as
2-DG and 3-BrpA, were approved for clinical trials, the
nonspecific inhibitions on all isoforms of HKs and normal
cells might result in toxic effects when they are applied in
patients. Therefore, to develop agents specifically targeting
on HKII of cancer cells is a direction for further studies.

3.3. LDH-A. LDH-A is emerging as a novel therapeutic
target in the glycolytic pathway. LDH has two subtypes:
LDH-A, also called the skeletal muscle type or LDH-M,
and LDH-B, also known as the heart type or LDH-H.
LDH-A exhibits kinetic features suitable for conversion of
pyruvate into lactate, whereas LDH-B has kinetic features
suitable for conversion of lactate into pyruvate. LDH-A is an
attractive target for cancer therapy because its expression is
largely confined to skeletal muscle [102]. Moreover, human
subjects with LDH-A deficiency show myoglobinuria under
intense anaerobic exercise, and individuals with complete
lack of LDH-A subunit have been documented with no
apparent increase in hemolysis [103]. Numerous studies
also demonstrated the overexpression of LDH-A in various

types of cancer [104]. Considering the role of LDH-A in
maintaining cancer cell energy metabolism, once its activity
is inhibited, the energy-producing burden will be transferred
to mitochondria, which may result in elevated oxidative
stress and induce mitochondrial pathway apoptosis. Several
studies have already found that the inhibition of LDH-A
in cancer cells could stimulate mitochondrial respiration,
decrease mitochondrial membrane potentials and finally lead
to cancer cell death [105, 106]. Given LDH-A inhibition has
no significant toxic effect on normal tissue, it is promising to
develop novel LDH-A inhibitors. Gossypol is a polyphenolic
compound isolated from cotton seeds, which are tradition-
ally used in TCM for improving immunity. Gossypol is ini-
tially applied as a male antifertility agent. Following studies
suggest its anticancer, antioxidant, antiviral and antiparasitic
activities [107–109]. Gossypol preferentially acts on redox
reactions catalyzed by NAD+/NADH-based enzymes such
as LDH-A. Gossypol is a nonselective competitive LDH-A
inhibitor and its anticancer activity appears to be associated
with LDH-A inhibition [110, 111]. However, gossypol
revealed significant toxicities including cardiac arrhythmias,
renal failure, muscle weakness, and even paralysis, resulting
in the stop of further development [112]. Galloflavin, a gallic
acid derivative, was recently found to directly bind with
LDH-A and LDH-B. Biological studies found that galloflavin
could block aerobic glycolysis and trigger apoptosis in
cancer cells without interfering cellular respiration. [113]. An
antimalaria drug FX-11 was also reported to inhibit LDH-A
activity and induce cancer growth arrest in both in vitro and
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in vivo experiments[114]. To explore active compounds from
herbal medicine as LDH-A inhibitors, we investigated the
effects of Spatholobus suberectus, a natural Chinese herb, on
LDH-A activities in breast cancer cells. Our results showed
that Spatholobus suberectus extractions significantly inhibited
LDH-A activity in the breast cancer cells (unpublished
data). Furthermore, we have conducted bioactivity-guided
screening and epigallocatechin was identified as the main
compound accounting for the herb anti-LDH-A function,
the mechanism of which is correlated to accelerated HIF-1α
proteasome degradation (unpublished data).

3.4. Others. Glucose transporters (GLUTs) are important
channels expressed on cell membrane for mediating glucose
and other substrates entering into cells as nutrients. A
total of six GLUT isoforms have been identified. Among
them, GLUT-1 is closely related to cancer stages and
chemo- or radiotherapy responses [115]. GLUT-1 silencing
reduced cancer cell proliferation and mediated apoptosis
[116]. For herb-derived inhibitors, apigenin, and genistein
were proved to inhibit GLUT-1 [117, 118]. GAPDH is
a classical glycolytic enzyme encoded by a “housekeeping
gene” which is constitutively expressed in most cells. GAPDH
is responsible for transforming glyceraldehydes-3-phosphate
to 1,3-bisphosphoglycerate coupled with the reduction of
NAD+ to NADH. Beside glycolytic function, GAPDH also
participated in endocytosis, membrane fusion, vesicular
secretory, nuclear tRNA transport, and DNA replication or
repair. GAPDH inhibition resulted in induction of apoptosis
[119]. Arsenic was demonstrated to abolish ATP generation
in GAPDH-catalysing reaction process, although it is not in
a direct binding mode [120]. AMP-activated protein kinase
(AMPK) serves as a critical sensor in monitoring intracellular
energy supply [121]. AMPK contributes to the increase of
glycolytic activity in cancer cells. Thus, AMPK becomes a
novel therapeutic target for cancer treatment. Herb-derived
compounds curcumin and quercetin were demonstrated
to induce apoptosis via AMPK pathway in cancer cells
[122, 123]. In addition, other glycolytic enzymes including
pyruvate kinase M2, glucose-6-phosphate isomerase, and
transketolase-like enzyme 1, also participate in maintaining
vitality of cancer cells. Development of small molecular
inhibitors derived from herbs or natural plants targeting
on these enzymes will be a new direction for anticancer
research. The potential glycolysis inhibitors discussed above
are summarized in the Figure 4.

In summary, recent research progress indicate that
many active compounds derived from herbal medicine have
the potentials to regulate key metabolic enzymes, such as
HIF-1α, GLUT-1, hexokinase, LDH-A, and PDK1. Those
enzymes and proteins are important signaling molecules
in the glycolytic pathways of cancer cells. The unique
glycolytic pathways could provide cancer cells sufficient
energy and ATP for their rapid proliferation and growth.
In the meantime, the unique metabolic characteristics of
cancer cells raise great opportunities for the development of
anticancer agents targeting on aerobic glycolysis. With this
strategy, the compounds derived from herbal medicine or
synthesized novel chemicals would preferentially kill cancer

cells instead of normal cells by blocking aerobic glycolysis,
greatly facilitating the drug discovery for molecular target
therapy.

4. Perspectives

The elucidation of specific molecular signaling involved
in cancer initiation, development, and metastasis have
provided the grounds for molecular targeting based ther-
apeutic strategy. Glycolysis is an important hallmark of
cancer cells differentiated from normal cells. The metabolic
alternations and adaptations of cancer cells have been
extensively studied in last decades. Tumor cells exhibit altered
metabolic behavior due to tumor cell intrinsic properties and
tumor microenvironment. With Warburg effect, tumor cells
have increased glucose uptake and preferentially metabolize
glucose through glycolysis even in the presence of oxygen,
allowing them to sustain higher proliferation rates and
fast growth. Therefore, targeting on glycolysis can be an
important strategy in cancer prevention and treatment.
For example, cancer cells acquire and develop resistance
in many patients when receiving chemotherapy or radio-
therapy. A recent study investigated the antitumor effects
of trastuzumab (a monoclonal antibody against EGFR-2)
in combination with glycolysis inhibitor 2-DG in ErbB2-
positive breast cancer. Trastuzumab inhibited glycolysis via
downregulation of heat shock factor 1 (HSF1) and LDH-
A in ErbB2-positive cancer cells, resulting in tumor growth
inhibition. Moreover, increased glycolysis via HSF1 and
LDH-A contributed to trastuzumab resistance. Combin-
ing trastuzumab with glycolysis inhibition synergistically
inhibited trastuzumab-sensitive and -resistant breast cancers
in vitro and in vivo, due to more efficient inhibition of
glycolysis [124]. Thus, inhibition of glycolysis may offer a
promising strategy to overcome the resistances of cancer
cells toward chemotherapy [125, 126]. Similarly, glycolysis
based on Warburg effect also links to radioresistance [127].
Given many herb-derived phytochemicals exhibit properties
of antiglycolysis and reversal of drug-resistance, Chinese
herbal medicine targeting cancer glycolysis can be developed
as an adjunct treatment for cancer patients by combining
chemotherapy and radiotherapy. It will provide an opportu-
nity to increase clinical outcome in cancer treatment.

There are 250,000 to 300,000 plant species in the world.
Although large efforts are made, only 5,000 plant species have
been studied for their possible medical applications. With
the long history of application in human subjects, Chinese
herbal medicine enjoys a unique position for molecular
targeting-based therapeutic strategy. Based on histological
documents and case reports in cancer treatment, Chinese
herbal medicine provides a fast track and important source
in drug discovery for molecular targeting based therapeutic
strategy. It is anticipated that in the years to come, more
and more medicinal herbs will be screened targeting on
glycolytic-related molecular targets or other therapeutic tar-
gets. Establishing well validated high throughput screening
platform is necessary and essential for the purpose, greatly
accelerating the process of drug development. In conclusion,
molecular-targeted screening strategy is critical and efficient
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Figure 4: Chemical structures of glycolytic inhibitors derived from Chinese herbs. (a) Chemicals targeting on HIF-1α; (b) HKII inhibitors;
(c) Chemicals targeting on LDH-A.
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strategy for exploring the active compounds from Chinese
herbal medicine for anticancer drug discovery. It will not
only bring the discoveries of new anticancer drugs with more
target specific and low toxic, but also make contributions to
the globalization and modernization of traditional Chinese
medicine.
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